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Abstract

Small-angle X-ray scattering (SAXS) patterns have been calculated based on a structure model, which consisted of the bundles of long-period

structures. The proposed model has produced various scattering patterns of polymers, such as the equatorial, layer line, four-spot, droplet-shaped

and triangular scattering. The 0.5th order scattering has arisen when the disorder in or between the long-period structures was large even though

the structure did not have the periodicity directly related to the scattering maximum. A slight decrease in the disorder due to slip between the long-

period structures has accounted for the sudden change of the SAXS pattern of a poly(ethylene terephthalate) fiber from the four-spot to the layer

line scattering which was caused by a slight tensile deformation.

q 2006 Elsevier Ltd. All rights reserved.

Keywords: Small-angle X-ray scattering; Poly(ethylene terephthalate) fiber; Tensile deformation
1. Introduction

Poly(ethylene terephthalate) (PET) fibers and films produce

widely varying small-angle X-ray scattering (SAXS) patterns

depending on the processing conditions, the degree of

deformation and the temperature of measurement. The melt-

spun PET fibers produce, depending on the take-up speed, the

equatorial streak, the cross-shaped scattering and the triangular

scattering with its apex on the center of the scattering pattern

[1–4]. The drawn and annealed PET fibers produce the four-

spot scattering [2]. The PET bristles [5] and films [6] produce

the layer line scattering, which is a striation parallel to the

equator and intersecting the meridian of the scattering pattern.

Most of these scatterings arise from the electron density

difference between the amorphous and the crystalline regions

that compose the long-period structure and the difference in the

arrangements of these regions gives rise to the variation of the

scattering patterns.

The present authors have measured SAXS of a single

filament of PET during tensile deformation using synchrotron
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radiation. The incident X-ray beam was perpendicular to the

fiber axis. The tensile strain and stress applied to the fiber when

the scattering patterns were measured and those values at fiber

break are shown in Table 1. Before deformation, the PET fiber

produced the four-spot scattering as shown in the inset of

Fig. 1. By applying a slight deformation, this scattering was

rapidly changed into the layer line scattering. The intensity

distributions of the PET fiber under deformation which were

measured along the line U–V in Fig. 2 are shown in Fig. 1 by

the dots. The intensity distributions were markedly changed by

a slight increase in deformation in a manner that the scattering

intensity increased mainly around the meridian. Similar change

of the scattering pattern has been observed during tensile

deformation of the PET films [6]. Why the layer line scattering

was not accompanied by the equatorial streak and why the

four-spot scattering was changed into the layer line scattering

by the application of such a small deformation are the main

concerns of the present study.

An isolated long-period structure produces a series of

scattering spots. The smaller the transverse size of the long-

period structure is, the wider the scattering spots are in the

same direction. Therefore, the layer line scattering can be

produced by a long-period structure with a small transverse

size. In this case, however, the zeroth order (central) scattering

spot is also wide and the equatorial streak is to be produced.

The SAXS patterns showing the layer line scattering without
Polymer 47 (2006) 3616–3628
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Table 1

Tensile strain and stress applied to a PET fiber, those values at fiber break and

values of sin g ju1j and ju3j

Strain Stress

(GPa)

sin g ju1j (nm) ju3j (nm)

0 0 5.39 13.8

0.01 0.10 5.24 13.8

0.02 0.16 5.20 13.7

0.03 0.20 4.99 14.3

0.04 0.27 5.05 14.5
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Fig. 2. Schematic illustration of scattering patterns.
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the equatorial streak have been calculated based on an isolated

long-period structure model by Tsvankin et al. [7–10]. They

have used, however, an interference function in which the

zeroth order peak has not been incorporated (i.e. the case of

jA1jZ1 has been excluded from Eq. (4) of Ref. [7]) and the

equatorial streak would have arisen if this term had been

appropriately incorporated.

Stockfleth et al. [6] have attributed the layer line scattering

without the equatorial streak to the long-period structures

having inclined interfaces between amorphous and crystalline

regions. A long-period structure having inclined interfaces

produces scattering spots off the longitudinal direction. They

have regarded the layer line scattering as an assembly of many

scattering spots that were produced by the long-period

structures having various inclinations of the interfaces. For

the scattering spots to lie on a layer line, the inclinations of the

interfaces have to be widely distributed but the periods have to

be constant for all the long-period structures. Based on this

model, they have explained the change of the scattering pattern

caused by tensile deformation similar to Fig. 1. They have
0.2 0.1 0 0.1 0.2
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Fig. 1. Dots indicate measured SAXS intensity distributions of a PET fiber at

various strains shown in the figure. Intensity distributions were measured along

the line U–V shown in Fig. 2 that passed through the intensity maximum.

Intensity distributions were shifted vertically in order to avoid overlap. Solid

lines indicate calculated intensity distributions based on F11 with the values of

the structure parameters shown in Tables 1 and 3 and Fig. 9. Inset is SAXS

pattern of the PET fiber at a strain of 0. Fiber axis is vertical. Incident X-ray

beam was perpendicular to the fiber axis.
attributed the increase in the scattering intensity around the

longitudinal direction (i.e. the meridian for the fibers and the

loading axis for the films) to the decrease in the electron

density of the amorphous regions in the long-period structures

that had small inclinations of the interfaces. For the scattering

to be kept on the layer line, the periods of all the long-period

structures should be increased consistently during tensile

deformation.

In the present study, the layer line scattering without the

equatorial streak will be attributed to the bundle of long-

period structures, which are arranged with a disorder. The

change of the scattering pattern from the four-spot to the

layer line scattering will be attributed to the decrease in

the disorder. The outline of this paper is as follows. Firstly,

the scattering intensity will be derived based on the structure

model, which consists of the bundle of long-period structures.

Secondly, a couple of equations for determining the structure

parameters from the intensity distributions will be derived.

Thirdly, the scattering patterns of the structure model will be

calculated using various values of the structure parameters. It

will be demonstrated that the proposed structure model

produces not only the layer line and the four-spot scattering

but also the equatorial, the triangular and the droplet-shaped

[9] scattering. It will be also demonstrated that the 0.5th order

scattering arises when the disorder is large. Lastly, the

intensity distributions shown in Fig. 1 will be analyzed based

on the proposed structure model. The equations, which will

be derived in this study, can also be applied to neutron

scattering if the intensity Ie of X-ray scattered by the electron

will be replaced with the intensity of neutron scattered by the

atom.
2. Theoretical

2.1. Structure model and definitions

In this study, SAXS caused by the electron density

difference between amorphous and crystalline regions is

considered. It is assumed that a pair of adjacent amorphous

and crystalline regions composes a unit cell, the unit cells are

arranged in one direction forming a rod and the rods are aligned



Fig. 3. Structure model consisting of the bundles of long-period structures.
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Fig. 4. Arrows indicate paths from starting unit cell P to ending unit cell Q,

which are followed in calculating convolution products for (a) three- and (b)

one-dimensionally propagating disorder. Contours of function Dj are

schematically illustrated in (c).
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in parallel with each other forming a bundle (Fig. 3). Such

bundles are dispersed in the irradiated volume of the specimen

without interference of X-rays.

It is assumed that the arrangement of the unit cells is

disturbed with the disorder of the second kind [11]. If the

disorder is of the first kind, the unit cells are displaced

stochastically in reference to the regular lattice points. If the

disorder is of the second kind, on the other hand, the unit cells

are displaced stochastically in reference to the positions of the

neighbouring unit cells. In this case, the distribution of

the vectors joining two unit cells gets broader as the number

of the unit cells separating those two unit calls increases. This

broadening of the distribution with increasing separation will

be called propagation of disorder and can be represented by the

convolution product of distribution functions. If the distri-

bution of the vectors from the unit cells to the neighbouring

unit cells is represented by a certain distribution function, the

vectors from the neighbouring unit cells to the second

neighbouring unit cells also distribute according to the same

distribution function. Therefore, the vectors joining the unit

cells and the second neighbouring unit cells distribute

according to the convolution product of the same two

distribution functions. Similarly, the distribution of the vectors

joining the unit cells, which are farther apart is obtained by

performing the convolution product of a number of distribution

functions following the path from the starting to the ending unit

cell. With the present structure model, several different paths

can be drawn between two unit cells in the bundle. If some

interaction has worked between the unit cells in neighbouring

rods during forming process of the structure, spatial correlation

exists between the unit cells in neighbouring rods. In this case,

the convolution product is performed following the path shown
in Fig. 4(a). This type of disorder will be called three-

dimensionally propagating disorder. If, on the other hand, the

arrangement of the unit cells in the rod has been developed

without any interaction between the unit cells in neighbouring

rods, the arrangements of the unit cells in different rods are

independent. There are spatial correlations between the unit

cells in the same rod and between the rods in a bundle. In this

case, the convolution product is performed following the path

shown in Fig. 4(b). This type of disorder will be called one-

dimensionally propagating disorder. With respect to the two-

dimensional arrangement of the origins of the rods in a bundle,

two- and one-dimensionally propagating disorder can be

considered in a similar way.

The following notations will be used in this study (Figs. 2–4).

u3 average period between unit cells

along a rod.

u1, u2 average periods between rods in a

bundle.

g angle between u1 and u2.

v volume of parallelepiped having

edge vectors u1, u2 and u3.

u�1 ; u
�
2 ; u

�
3 reciprocal vectors of u1, u2 and u3,

respectively.

a1ju1j, a2ju2j, a3ju3j sizes of crystalline region.

N3 number of unit cells in a rod.

N1, N2 number of rods in a bundle counted

in parallel to u1 and u2, respectively.

Nb number of bundles in irradiated

volume.
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Dj(x) distribution, around average period

uj, of vectors x joining nearest

neighbouring unit cells.

ujkjukj distribution width or full-width at

half-maximum (FWHM) of Dj in

parallel to uk.

Rj, zj absolute value and phase factor of

Fourier transform of Dj, respectively.

rd electron density difference between

amorphous and crystalline region.

ru(x) electron density distribution in a unit

cell where x issues from origin of

unit cell.

rb(x) electron density distribution in a

bundle where x issues from origin

of bundle.

Ie(s), Ib(s), Is(s) scattering intensity by electron, bun-

dle and irradiated volume, respect-

ively.

x real space vector.

x1, x2, x3 components of x with respect to base

vectors u1, u2 and u3, respectively.

2q scattering angle in radian.

s reciprocal space vector (scattering

vector).

s1, s2, s3 components of s with respect to base

vectors u�1 ; u
�
2 ; and u�3 , respectively.

se, sm components of s with respect to base

vectors u�12 and u�3 as defined by

Eq. (38). These components corre-

spond to the equatorial and the

meridional coordinate of fiber scatter-

ing patterns when the incident X-ray

beam is perpendicular to the fiber axis.

2qp, jsjp, smp peakpositions ofmeridional scattering

measured in parallel to meridian.

D(2q), Djsj, Dse FWHM’s of meridional scattering

measured in parallel to equator.

hj integer closest to sjKzj representing

order of scattering.

j, k indices showing directions of 1, 2 and

3.

l X-ray wavelength.

The multiple convolution product is defined as

f ðxÞ*n Z
dðxÞ

½f ðxÞ�nK1��f ðxÞ

ðnZ 0Þ

ðnR1Þ

(
(1)

where f(x)*g(x) stands for the convolution product of functions

f(x) and g(x), and d(x) is the three-dimensional Dirac delta

function. The Fourier transforms of the functions of xj and x are

defined as:

Fðf ðxjÞÞZ

ðN
KN

f ðxjÞexpðK2pixjsjÞdxj (2)
Fðf ðxÞÞZ

ðN
KN

ðN
KN

ðN
KN

f ðxÞexpðK2pi½x1s1 Cx2s2

Cx3s3�Þvdx1dx2dx3 (3)

The scattering vector is related to the scattering angle as:

jsjZ
2

l
sin q (4)

Other fundamental relations, which will be used in this

study have been summarized in Appendix of a paper treating

X-ray diffraction of layer-type molecules [12].
2.2. Three-dimensionally propagating disorder

The scattering intensity of the bundle, Ib, is given by:

IbðsÞZ IeðsÞjFðrbðxÞÞj
2 Z IeðsÞFðrbðKxÞ�rbðxÞÞ (5)

The following vectors are defined by numbering the unit

cells and the rods.

xr vector from origin of a bundle to origin of the rth rod

in this bundle.

xrc vector from origin of the rth rod to the cth unit cell in

this rod.

The position of the cth unit cell in reference to the origin of

the bundle can be represented by a distribution function d(xK
[xrCxrc]). The electron density distribution in a bundle is

represented as:

rbðxÞZ ruðxÞ
�
XN1N2

rZ1

XN3

cZ1

dðxK½xr Cxrc�Þ (6)

The auto-correlation of rb can be rearranged as:

rbðKxÞ�rbðxÞZ ½ruðKxÞ�ruðxÞ�
�
XN1N2

r;r 0Z1

XN3

c;c0Z1

!dðxK½xr CxrcKxr 0Kxr 0c0 �Þ

(7)

The vector xrCxrcKxr 0Kxr 0c 0 joins the cth unit cell in the

rth rod and the c 0th unit cell in the r 0th rod. For a regular lattice,

SSd(xK[xrCxrcKxr 0Kxr 0c 0]) shows discrete spikes at xZ
xrCxrcKxr 0Kxr 0c 0 whereas for a disordered lattice, it shows

broad peaks. In the latter case, the peak height decreases with

increasing jxj since the number of the vectors joining two unit

cells decreases with increasing jxj for the lattice with a finite

size. The number of the vectors joining two unit cells is given

by Z1(x1)Z2(x2)Z3(x3) where:

ZjðxjÞZ
NjKjxjj ðjxjj%NjÞ

0 ðotherwiseÞ

(
(8)

Therefore, SSd(xK[xrCxrcKxr 0Kxr 0c 0]) is given by the

product of the number Z1(x1)Z2(x2)Z3(x3) and the number

average distribution of the vectors joining two unit cells in an
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infinitely large lattice, hSSd(xK[xrCxrcKxr 0Kxr 0c 0])iZ.

rbðKxÞ�rbðxÞZ ½ruðKxÞ�ruðxÞ�
�

"
Z1ðx1ÞZ2ðx2ÞZ3ðx3Þ

!
XN

r;r 0ZKN

XN
c;c0ZKN

dðxK½xr CxrcKxr 0Kxr 0c0 �Þ

* +
Z

# (9)

It is assumed that the arrangement of the unit cells is

disturbed with the three-dimensionally propagating disorder.

The distribution of the vectors joining the nearest neighbouring

unit cells can be represented as either Dj(xKuj)ZDj(x)*d(xK
uj) orDj(KxKuj)ZDj(Kx)*d(xCuj) where Dj(x) andDj(Kx)

are the distribution of x around the average periods uj andKuj,

respectively. The vectors joining the unit cells and their

second neighbors in the direction of uj distribute according to

Dj(xKuj)*Dj(xKuj). The vectors joining the unit cells and their

neighbors in the direction of ujCuk distribute according to

Dj(xKuj)*Dk(xKuk). By considering all the possible combi-

nations of the starting and the ending unit cell, hSSd(xK[xrC
xrcKxr 0Kxr 0c 0])iZ is represented as:

XN
r;r 0ZKN

XN
c;c0ZKN

dðxK½xr CxrcKxr 0Kxr 0c0 �Þ

* +
Z

Z
XN
nZ1

D1ðKxKu1Þ
�n CdðxÞC

XN
nZ1

D1ðxKu1Þ
�n

" #

*
XN
nZ1

D2ðKxKu2Þ
�n CdðxÞC

XN
nZ1

D2ðxKu2Þ
�n

" #

*
XN
nZ1

D3ðKxKu3Þ
�n CdðxÞC

XN
nZ1

D3ðxKu3Þ
�n

" #
(10)

The Fourier transform of Dj is expressed using Rj and zj as:

FðDjðxÞÞZRjexpð2pizjÞ ð0%Rj%1 and 0%zj!1Þ (11)

The Fourier transform of the convolution product of two

functions is given by the product of the Fourier transforms of

these functions. Ignoring the variations of Rj and zj with sj
around each scattering peak, the following equation is derived.

FðrbðKxÞ�rbðxÞÞZ jFðruðxÞÞj
2

! FðZ1ðx1ÞÞ
�
XN
nZKN

Rjnj
1 expð2pin½s1Kz1�Þ

" #

! FðZ2ðx2ÞÞ
�
XN
nZKN

Rjnj
2 expð2pin½s2Kz2�Þ

" #

! FðZ3ðx3ÞÞ
�
XN
nZKN

Rjnj
3 expð2pin½s3K23�Þ

" #
(12)

In the right side of this equation, the Fourier transforms and

the convolution products are carried out with respect to xj and sj
that appear in each line, respectively. The scattering intensity of

the bundle with the three-dimensionally propagating disorder is
finally derived as:

IbðsÞZ IeðsÞjFðruðxÞÞj
2GðN1;R1; z1; s1Þ

!GðN2;R2; z2; s2ÞGðN3;R3; z3; s3Þ
(13)

The function G is defined as (Appendix A)

GðNj;Rj; zj; sjÞZFðZjðxjÞÞ
�
XN
nZKN

Rjnj
j expð2pin½sjKzj�Þ

Z
4RjN

2
j

ð1CRjÞ ð1KRjÞ
2N2

j C4
h i1=2 exp K

4pN2
j ðsjK2jKhjÞ

2

ð1KRjÞ
2N2

j C4

" #

C
ð1KRjÞNj

1CRj

(14)

where the convolution product is carried out with respect to sj. In

the case of NjZ1, the exact value of GZ1 should be used in

order to reduce error. In the case of RjZ0,GZNj irrespective of

sj. In the case ofRjO0 andNjO1,G produces peaks at sjZhjCzj
where the integer hj represents the order of scattering. The peak

intensity increases with increasing Rj. Eq. (13) indicates that the

scattering intensity distribution of the bundle is given by the

product of three functions, which determine the intensity

distributions in the individual directions.
2.3. One-dimensionally propagating disorder

It is assumed that the arrangement of the unit cells is

disturbed with the one-dimensionally propagating disorder and

the arrangement of the origins of the rods is disturbed with the

two-dimensionally propagating disorder. Eq. (7) can be

rearranged as:

rbðKxÞ�rbðxÞZ ½ruðKxÞ�ruðxÞ�

�
XN1N2

r;r 0Z1

XN3

cZ1

dðxKxrcÞ
�
XN3

c0Z1

dðxCxr 0c0 Þ
�dðxKxr Cxr 0 Þ

" #

(15)

Since the arrangements of the unit cells in different rods are

independent, Sd(xKxrc) is independent of Sd(xCxr 0c 0) and

d(xKxrCxr 0) if r is different from r 0. Therefore, Sd(xKxrc)

can be replaced by its average for all the rods, hSd(xKxrc)ir.
Similarly, Sd(xCxr 0c 0) can be replaced by its average. The

auto-correlation of rb is rearranged as:

rbðKxÞ�rbðxÞZ ½ruðKxÞ�ruðxÞ�

�
XN3

cZ1

dðxKxrcÞ

* +�

r

XN3

cZ1

dðxCxrcÞ

* +�

r

XN1N2

r;r 0Z1

dðxKxrCxr 0 Þ

"

KN1N2

XN3

cZ1

dðxKxrcÞ

* +�

r

XN3

cZ1

dðxCxrcÞ

* +
r

C
XN1N2

rZ1

XN3

c;c0Z1

dðxKxrcCxrc0 Þ

#

(16)
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The origins of unit cells that locate at the ends of rods are

taken to be the origins of rods. The distribution of the vectors

joining neighbouring unit cells in a rod is represented by D3.

The distribution of the vectors joining the origins of

neighbouring rods is represented by D1 and D2. Each factor

in Eq. (16) is represented as follows.

XN3

cZ1

dðxKxrcÞ

* +
r

Z
XN3K1

nZ0

D3ðxKu3Þ
�n (17)

XN3

c;c0Z1

dðxKxrcCxrc0 ÞZZ3ðx3Þ
XN

c;c0ZKN

dðxKxrcCxrc0 Þ

* +
Z

(18)

XN1N2

r;r 0Z1

dðxKxrCxr 0 ÞZZ1ðx1ÞZ2ðx2Þ
XN

r;r 0ZKN

dðxKxrCxr 0 Þ

* +
Z

(19)

where

XN
c;c0ZKN

dðxKxrcCxrc0 Þ

* +
Z

Z
XN
nZ1

D3ðKxKu3Þ
�nCdðxÞC

XN
nZ1

D3ðxKu3Þ
�n (20)

XN
r;r 0ZKN

dðxKxrCxr 0 Þ

* +
Z

Z
XN
nZ1

D1ðKxKu1Þ
�nCdðxÞC

XN
nZ1

D1ðxKu1Þ
�n

" #

�
XN
nZ1

D2ðKxKu2Þ
�nCdðxÞC

XN
nZ1

D2ðxKu2Þ
�n

" #
(21)

By performing the Fourier transform, the following

equations are derived.

FðrbðKxÞ�rbðxÞÞZ jFðruðxÞÞj
2 F

XN3

cZ1

dðxKxrcÞ

* +
r

 !�����
�����
2"

F
XN1N2

r;r 0Z1

dðxKxrCxr 0 Þ

 !
KN1N2 F

XN3

cZ1

dðxKxrcÞ

* +
r

 !�����
�����
2

C
XN1N2

rZ1

F
XN3

c;c0Z1

dðxKxrcCxrc0 Þ

 !#

(22)

F
XN3

cZ1

dðxKxrcÞ

* +
r

 !�����
�����
2

Z
XN3K1

nZ0

Rn
3expð2pni½s3Kz3�Þ

�����
�����
2

(23)
F
XN3

c;c0Z1

dðxKxrcCxrc0 Þ

 !

ZFðZ3ðx3ÞÞ
�
XN
nZKN

Rjnj
3 expð2pni½s3Kz3�Þ (24)

F
XN1N2

r;r 0Z1

dðxKxrCxr 0 Þ

 !

Z FðZ1ðx1ÞÞ
�
XN
nZKN

Rjnj
1 expð2pni½s1Kz1�Þ

" #

! FðZ2ðx2ÞÞ
�
XN
nZKN

Rjnj
2 expð2pni½s2Kz2�Þ

" #
(25)

In the right sides of Eqs. (24) and (25), the Fourier

transforms and the convolution products are carried out with

respect to xj and sj that appear in each line, respectively. The

scattering intensity of the bundle with the one-dimensionally

propagating disorder is finally derived as:

IbðsÞZIeðsÞjFðruðxÞÞj
2

!½GðN1;R1;21;s1ÞGðN2;R2;22;s2ÞHðN3;R3;23;s3Þ

KN1N2HðN3;R3;23;s3ÞCN1N2GðN3;R3;23;s3Þ�

(26)

The functions H is defined as (Appendix A):

HðNj;Rj;2j;sjÞZ
XNjK1

nZ0

Rn
j expð2pni½sjK2j�Þ

�����
�����
2

Z
1KR

Nj

j

� �2
C4R

Nj

j sin
2ðpNj½sjK2j�Þ

ð1KRjÞ
2C4Rjsin

2ðp½sjK2j�Þ
(27)

In the case of NjZ1, the exact value of HZ1 should be used

in order to reduce error. It is known by comparing Eq. (26) with

(13) that the scattering intensity for the one-dimensionally

propagating disorder is obtained by replacing the function G

that determines the intensity distribution in parallel to s3 for the

three-dimensionally propagating disorder by H and adding a

factor in proportion to the difference between G and H.
2.4. Factors depending on degree of disorder

The parameter zj has an important influence on the

appearance of the scattering pattern since the 0.5th order

scattering arises when zjZ1/2. For an even function Dj, F(Dj)

takes a real number and zj is either 0 or 1/2 depending on

whether F(Dj) is positive or negative at a given scattering

angle, respectively.

When the vectors joining the nearest neighboring unit cells

distribute uniformly in a certain volume, Dj can be represented
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by a rectangular function as follows.

DjðxÞZ
1

vuj1uj2uj3

ðKuj1=2Þ%x1% ðuj1=2Þ

ðKuj2=2Þ%x2% ðuj2=2Þ

ðKuj3=2Þ%x3% ðuj3=2Þ

0
B@

1
CA

0 ðotherwiseÞ

8>>><
>>>:

(28)

where jZ1, 2 or 3. The Fourier transform of this function is as

follows.

Rjexpð2pi2jÞZ
sinðpuj1s1Þ

puj1s1

sinðpuj2s2Þ

puj2s2

sinðpuj3s3Þ

puj3s3
(29)

With the one-dimensionally propagating disorder, D1 and

D2 represent the distributions of the vectors joining the origins

of neighboring rods. In this case, the rods do not overlap with

each other even though these functions have a long tail in

parallel to u3. Therefore, the following distribution function

can be used for D1 and D2.
DjðxÞZ
ln 2

p

0
@

1
A1=2

2

vuj1uj2uj3

exp K4 ln 2
x23
u2
j3

0
@

1
A ðKuj1=2Þ%x1% ðuj1=2Þ

ðKuj2=2Þ%x2% ðuj2=2Þ

 !

0 ðotherwiseÞ

8>><
>>: (30)
where jZ1 or 2. The FWHM of this distribution in parallel to

u3 is uj3ju3j. The Fourier transform of this function is as

follows.

Rjexpð2pi2jÞZ
sinðpuj1s1Þ

puj1s1

sinðpuj2s2Þ

puj2s2
exp K

½puj3s3�
2

4 ln 2

� �
(31)

The values ofujk should be chosen so as to avoid the overlap

of unit cells. The conditions to avoid the overlap of the nearest

neighboring unit cells are as follows. For the three-

dimensionally propagating disorder:

aj C
1

2
ujj%1 (32)

For the one-dimensionally propagating disorder, by con-

sidering that the arrangements of the unit cells in neighboring

rods are independent and hence the overlap of the unit cells

locating at the ends of neighboring rods should be avoided:

aj C
1

2
ujj C ðN3K1Þu3j%1 ðjZ 1 or 2Þ

aj C
1

2
ujj%1 ðjZ 3Þ

8>>>><
>>>>:

(33)
2.5. Factor depending on unit cell shape

The factor jF(ru)j
2 depends on the electron density

distribution and the shape of the unit cell. By applying the

Babinet principle, the electron density of the unit cell can be

expressed as:

ruðxÞZ
rd ðin crystalline regionÞ

0 ðin amorphous regionÞ

(
(34)
By considering a parallelepiped-shaped unit cell, it is

assumed that the crystalline region has the edge vectors a1u1C
b3u3, a2u2, and a3u3. The parameter b3 represents the

inclination of the interface between the amorphous and the

crystalline region. The factor jF(ru)j
2 for the parallelepiped-

shaped unit cell can be derived as:

jFðruðxÞÞj
2 Z ðrda1a2a3vÞ

2 sin
2ðp½a1s1 Cb3s3�Þ

ðp½a1s1 Cb3s3�Þ
2

!
sin2ðpa2s2Þ

ðpa2s2Þ
2

sin2ðpa3s3Þ

ðpa3s3Þ
2

zðrda1a2a3vÞ
2expðKp½a1s1 Cb3s3�

2

Kp½a2s2�
2Kp½a3s3�

2Þ (35)
By considering a columnar unit cell, it is assumed that the

two bases of the crystalline region are circular with a diameter

a1ju1jZa1ju2j, centered at (x1, x2, x3)Z(0, 0, 0) and (0, 0, a3),

and parallel to the plane including u1 and u2. For simplicity, it

is assumed that ju1jZju2j. The factor jF(ru)j
2 for the columnar

unit cell can be derived as:

jFðruðxÞÞj
2 Z

prda
2
1a3v

4 sin g

� �2
2J1ðQÞ

Q

� �2 sin2ðpa3s3Þ

ðpa3s3Þ
2

z
prda

2
1a3v

4 sin g

� �2

expðK0:2653Q2ÞexpðKp½a3s3�
2Þ

(36)

QZ
pa1

sin g
s21 Cs22K2s1s2cos g
� �1=2

(37)

The function Jn is the Bessel function of the first kind

of order n. Both (2J1(Q)/Q)2 and its approximation

exp(K0.2653Q2) are 1 at QZ0 and the difference between

the values of these functions is less than 0.04.
2.6. Scattering intensity of irradiated volume

The scattering intensity of the irradiated volume is given by

the sum of the intensities of individual bundles since there is no

interference of X-rays between the bundles. A coordinate

rotation should be carried out according to the orientation

distribution of the bundles before summing up the intensities of

the bundles. The calculation procedure for the fiber system in

which u3 of the bundles distributes around the fiber axis by

keeping a cylindrical symmetry is similar to that shown in a

previous paper [12]. In the present study, it is assumed that u3
of the bundles is in parallel to the fiber axis and u1 and u2
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distribute around the fiber axis with a cylindrical symmetry.

For simplicity, it is also assumed that ju1jZju2j and u1 and u2
are perpendicular to u3. In this case,

u�1
�� ��Z u�2

�� ��Z1=ðju1jsin gÞ, u�3
�� ��Z1=ju3j, u

�
1 and u�2 are per-

pendicular to u3, and u�3 is parallel to u3. A radial vector u�12,
which is of the same length as u�1 , perpendicular to u�3 and

making an angle f against u�1 is introduced. The components se
and sm of a reciprocal vector s is defined as:

sZ seu
�
12 Csmu

�
3 Z

se
sin gju1j

u�12
u�12
�� ��C sm

ju3j

u�3
u�3
�� �� (38)

The scattering intensity of the irradiated volume can be

calculated as:

Isðse; smÞZ
Nb

2p

ð2p
0

Ibðs1; s2; s3Þdf (39)

s1 Z
sinðfCgÞ

sin g
se (40)

s2 Z
sin f

sin g
se (41)

s3 Z sm (42)
2.7. Determination of structure parameters

The scattering intensity can be calculated from the values of

the structure parameters using the equations so far derived. In

the following, the equations for determining size parameters

from the scattering intensity distributions are considered based

on Eqs. (4), (13), (36) and (38)–(42). All the assumptions made

for deriving these equations are adopted. In addition, it is

assumed that Rj and zj are constant around each scattering peak

and N1ZN2. As shown in Fig. 2, the peak positions of the

meridional scattering measured as a function of 2q, jsj and sm
along the line S–T are denoted as 2qp, jsjp and smp,

respectively. The FWHM’s of the meridional scattering

measured as a function of 2q, jsj and se along the line U–V

are denoted as D(2q), Djsj and Dse, respectively.
The height of the unit cell ju3j can be determined from 2qp.

When the variation of jF(ru)j
2 with s3 is much smaller than the

variation of G(N3, R3, z3, s3), the intensity distribution as a

function of sm is determined by G(N3, R3, z3, s3) which

produces the peaks of order h3 at smpZh3Cz3. Therefore, the

Bragg equation can be modified as follows.

ju3jZ
h3 C23

jsjp
Z

ðh3 C23Þl

2 sin qp
(43)

It should be noted the when z3Z1/2, the meridional

scattering closest to the center beam is so to speak the 0.5th

order scattering (h3Z0, h3Cz3Z0.5). The height of the unit

cell determined with the Bragg equation from this scattering by

misidentifying it as the 1st order scattering is twice the true

value.
The length of the rod N3ju3j and the degree of disorder R3

influence the FWHM of the intensity distribution in parallel to

the meridian through G(N3, R3, z3, s3). If the values of FWHM

for the scatterings with several different orders are available,

N3ju3j and R3 can be determined individually using the

Hosemann equation [11]. If the scattering is too broad to apply

the Hosemann equation, the degree of disorder can be

estimated by a method proposed in a previous paper [13].

The transverse size of the bundle N1ju1j is determined from

D(2q) provided that the disorder is small. When the disorder is

so small that R1ZR2Z1 and z1Zz2Z0, G(N1, R1, z1, s1)G(N2,

R2, z2, s2) is an exponential function ofKpN2
1 ðs

2
1Cs22Þ. The

average ofKpN2
1 ðs

2
1Cs22Þ with respect to f isKpN2

1 ðse=sin gÞ2.

On the other hand, jF(ru)j
2 is an exponential function of

K0.2653Q2ZK0.2653(pa1)
2(se/sin g)2 which is smaller than

KpN2
1 ðse=sin gÞ2. Hence, G(N1, R1, z1, s1)G(N2, R2, z2, s2)

shows a larger variation with se than jF(ru)j
2 does and

determines the intensity distribution as a function of se.

Therefore, the following Scherrer equation is available.

N1ju1jZ 2
ln 2

p

� �1=2 ju1jsin g

Dse
Z 2

ln 2

p

� �1=2 1

Djsj

Z 2
ln 2

p

� �1=2 l

Dð2qÞ
Z

0:94l

Dð2qÞ
(44)

The unit cell diameter a1ju1j is determined from D(2q)
provided that the disorder is large. When the disorder is so

large that R1ZR2Z0,G(N1, R1, z1, s1)G(N2, R2, z2, s2) does not

depend on s1 and s2. In this case, jF(ru)j
2 determines the

intensity distribution as a function of se. Therefore, the

following equation can be derived.

a1ju1jZ
2

p

ln 2

0:27

� �1=2 ju1jsin g

Dse
Z

2

p

ln 2

0:27

� �1=2 1

Djsj

Z
2

p

ln 2

0:27

� �1=2 l

Dð2qÞ
Z

1:0l

Dð2qÞ
(45)

The influence of the change in the packing density of the

rods in the bundle can be predicted based on Eqs. (44) and (45).

The compaction of the packing of the rods corresponds to the

decrease in ju1j by keeping constant values of a1ju1j and N1.

Eqs. (44) and (45) predict that the compaction leads to the

increase in D(2q) when the disorder is small but it does not

influence D(2q) when the disorder is large.
3. Calculation of scattering patterns

3.1. Conditions of calculation

The scattering patterns of the fibers consisting of the

bundles of long-period structures were calculated based on the

equations so far derived by assuming that incident X-ray beam

was perpendicular to the fiber axis. The conditions and the

values of the structure parameters used for calculation are

shown in Tables 2 and 3. Among the structure models F01 to

F16, F11 represents a series of structures, which vary in u13



Table 2

Conditions used for calculating scattering patterns

Items Conditions (equations)

Ie, rd, v, Nb Arbitrary constants

Lattice vectors ju1jZju2j

Angle between u1 and u3 is p/2

Angle between u2 and u3 is p/2

Angle between u1 and u2 is p/3

Unit cell Columnar (Eq. (36))

a1Za2
Size of lattice N1ZN2

Disorder of lattice Three-dimensionally propagating

disorder (Eq. (13))

Rectangular distribution (Eq. (29))

D1(x)ZD2(x)

u11Zu12Zu21Zu22

u13Zu23

u31Zu32

Orientation of bundles Unidirectional and cylindrically

symmetric (Eq. (39))

Incident X-ray beam Perpendicular to fiber axis
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and the values of u13 are indicated by the figures after F11 as

F11-u13. The calculated intensities were normalized by the

intensity at (se, sm)Z(0, 0) for each structure model. The

scattering patterns were obtained by converting the scattering

intensities to the brightness levels using the conversion rates

which were constant for F01 to F09 and slightly varied for F10

to F16 so the features of the scattering patterns might be easily

grasped. As shown in Fig. 2, the se and the sm axis were taken in

the horizontal and the vertical direction, respectively. The

displayed region of the patterns is also shown in Fig. 2. Since

the Ewald sphere can be approximated by a plane for the small-

angle scattering, the calculated intensity distributions on the

seKsm plane are comparable with the measured scattering

patterns where the magnitude of the scattering vectors in the

equatorial and meridional directions is given by se/(sin g ju1j)

and sm/ju3j according to Eq. (38).
Table 3

Values of structure parameters used for calculating scattering patterns

Structure

model

a1 a3 N1 N3

F01 0.5 0.3 3 4

F02 1.0 0.3 3 4

F03 0.5 0.9 3 4

F04 0.5 0.3 6 4

F05 0.5 0.3 3 8

F06 0.5 0.3 3 4

F07 0.5 0.3 3 4

F08 0.5 0.3 3 4

F09 0.5 0.3 3 4

F10 1.0 0.4 1 4

F11-u13 1.0 0.3 3 4

F12 1.0 0.4 4 4

F13 1.0 0.4 4 4

F14 1.0 0.4 4 4

F15 1.0 0.4 4 4

F16 0.4 0.2 2 4
3.2. Influences of structure parameters on scattering patterns

Each of F02 to F09 differs from a reference structure model

F01 in a certain structural feature and the calculated patterns of

F01 to F09 are shown in Fig. 5. By comparing the calculated

patterns of F02 to F09 with that of F01 and referring to

Eq. (13), the following remarks can be made with respect to the

influences of the structure parameters on the appearance of the

scattering patterns.
3.2.1. Unit cell sizes, a1, a2 and a3
The larger aj is, the more rapidly jF(ru)j

2 decreases with

increasing sj. When a1 (Za2) increases, the scattering spots of

higher orders h1 and h2 disappear (F02). When a3 increases, the

scattering spots of higher order h3 disappear (F03).
3.2.2. Lattice sizes, N1, N2 and N3

The larger Nj is, the sharper peaks G(Nj, Rk, zk, sj) produces

as a function of sj. When N1 (ZN2) increases, the scattering

spots shrink in the equatorial direction (F04). When N3

increases, the scattering spots shrink in the meridional direction

(F05).
3.2.3. Disorder between longitudinally adjacent unit cells,

u31, u32 and u33

The increase in u31, u32 and u33 decreases R3 and hence the

peak height of G(N3, R3, z3, s3) but increases the baseline

height of this function (Appendix A). As a result, the scattering

spots turn into the streaks parallel to the meridian. For a large

u31 (Zu32), R3 decreases markedly with increasing se and the

scattering spots of higher orders h1 and h2 turn into the streaks

parallel to the meridian (F06). For a large u33, on the other

hand, R3 decreases markedly with increasing sm and the

scattering spots of higher order h3 turn into the streaks parallel

to the meridian (F07).
u11 u13 u31 u33

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 1.0 0

0 0 0 1.0

1.0 0 0 0

0 1.0 0 0

0 0 0 1.2

0 u13 0 0.4

0 1.2 0 0.4

0 1.6 0 0.4

0 0.6 0 1.2

0 1.0 0 1.2

1.0 1.0 0 1.6



Fig. 5. Calculated scattering patterns of F01 to F09.
Fig. 6. Calculated scattering patterns of F10 to F16.
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3.2.4. Disorder between transversely adjacent unit cells,

u11, u12, u13, u21, u22 and u23

The increase in u11, u12, u13, u21, u22 and u23 decreases R1

and R2 and hence the peak height of G(N1, R1, z1, s1)G(N2, R2,

z2, s2) but increases the baseline height of this function

(Appendix A). As a result, the scattering spots turn into the

streaks parallel to the equator. For a large u11 (Zu12Zu21Z
u22), R1 and R2 decrease markedly with increasing se and the

scattering spots of higher orders h1 and h2 turn into the streaks

parallel to the equator (F08). For a large u13 (Zu23), on the

other hand, R1 and R2 decrease markedly with increasing sm
and the scattering spots of higher order h3 turn into the streaks

parallel to the equator (F09).
3.3. Characteristic scattering patterns of polymers

The structure parameters of F10 to F16 were chosen so that

they produce characteristic scattering patterns often observed

with polymers. The calculated patterns of F10 to F16 are shown

in Fig. 6. The following remarks can be made with respect to

the features of the scattering patterns and the structures.
3.3.1. Equatorial streak

When the rods are isolated from each other so that there is

no interference of X-rays, the bundle can be regarded as

consisting of a single rod. When u33 is small as well, several

streaks in parallel to the equator are produced. When u33 is

large, on the other hand, the equatorial streak is produced alone

(F10). When the rods form a bundle whereas the distortion

between the rods u11 (Zu12Zu21Zu22) and u33 are large, the
equatorial streak having a maximum or a shoulder is produced

alone.

3.3.2. Layer line and four-spot scattering

The calculated patterns of F11 with various values of u13

demonstrate the significant influences of this parameter on the

appearance of the scattering pattern. With increasing u13 (Z
u23) up to 1, the meridional scattering is elongated in parallel to

the equator and the layer line scattering is developed (F11-0.8,

0.9 and 1.0). Due to a large a1 of this structure, the first order

equatorial scattering spots, which are clearly observed for F09

are weak. When u13 increases beyond 1, the four-spot

scattering which has maxima at seZ1/2 instead of seZ0

is developed. The four-spot scattering is developed since

Rjexp(2pizj) takes a negative value and hence zjZ1/2 at smZ1

(jZ1 and 2). In general, Rj exp(2pizj) in Eq. (29) takes a

negative value for 1!uj3!2 at s3Z1 if uj1Zuj2Z0. It should

be noted that the structure causing the four-spot scattering does

not have the periodicity directly related to the scattering

maxima. Slight concave and convex bendings from the straight

layer line are observed for F12 and F13.

Fig. 7 shows the calculated intensity distributions along the

line U–V shown in Fig. 2 at smZ1 for F11. The characteristic

feature of the change of the intensity distribution is that with

decreasing u13 the intensity increases preferentially in the

center of the layer line without causing large change in the

tails. This feature resembles that found in Fig. 1.

Fig. 8 shows the relation between u13 and Dse for the

intensity distributions shown in Fig. 7. The value of Dse for F11
predicted from Eq. (44) is 0.27, which is in accordance with the

value at u13Z0 shown in Fig. 8. The value of Dse for F11

predicted from Eq. (45) is 0.88, which is in accordance with
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the value at u13Z2 shown in Fig. 8. For the values of u13

between 1 and 2, Dse takes a larger value than the prediction of
Eq. (45) due to the development of the four-spot scattering.
3.3.3. Droplet-shaped and triangular scattering

When u33 is very large, R3exp(2piz3) takes a negative value

and z3Z1/2 in a certain region of sm. This displaces the

scattering spot from (se, sm)Z(0, 1) to (0, 1/2). As shown

above, the scattering spot is elongated in parallel to the equator

with increasing u13 (Zu23). As a result, the droplet-shaped

scattering is produced when u33 is large and u13 takes a

moderate value (F14). The triangular scattering with its apex

on the center of the scattering pattern is produced when u33 and

u13 are large (F15). It should be noted that these structures do

not have the periodicity directly related to the scattering

maxima. When u11 (Zu12Zu21Zu22) is large as well, the

scattering spots on the equator are elongated in parallel to the

equator. Thus the equatorial streak is produced in addition to

the triangular scattering (F16). It should be noted that the

equatorial streak and the triangular scattering of this pattern are

not produced by different components of the fiber structure but

the bundle of long-period structures produces both of these

scatterings simultaneously.
Fig. 8. Plot of Dse versus u13 for F11.
3.3.4. Other type of scattering

The cross-shaped scattering will be obtained if it is assumed

that u1 and/or u2 are not perpendicular to u3. The scattering

patterns of the interlocking shish–kebab structure [4] and a

structure in which transversely neighbouring crystalline

regions are shifted stepwise [14] will be calculated if it is

assumed that u1 is not perpendicular to u3 and b3 in Eq. (35)

takes a value which makes the bases of the crystalline regions

perpendicular to u3.

3.3.5. Higher order scattering

In the calculated patterns of Fig. 6, a trace of higher order

scattering is discernible in addition to the main scatterings

mentioned above. In the actual measurements, the higher order

scatterings are reduced due to several factors, which have not

been taken into account in the present calculation. These

factors are, for example, the fluctuation of the electron density

in the unit cell [8], the distributions in the shapes and the sizes

[8] of the unit cells, the orientation distributions of the unit cells

and the rods, and the threshold level of the detector below

which no X-ray can be detected even with the measurements

for a long duration.

3.4. Scattering patterns of PET fiber

SAXS of the PET fiber shown in Fig. 1 was analyzed based

on the model consisting of the bundles of long-period

structures. The structure parameters were determined by

comparing the calculated and the measured intensity distri-

butions. The conditions shown in Table 2 were used for

calculation.

Since a1 is expected to be large from the absence of the first

order equatorial scattering spot, a1 was assumed to be 1. This

means that the rods are closely packed in the bundle and the

values allowed for u11 and u31 are 0. The value of ju3j was

estimated to be about 14 nm by applying Eq. (43) with h3C
z3Z1 to the measured value of jsjp. On the other hand, the size

of the crystalline region in parallel to the fiber axis a3ju3j was

estimated to be about 4.2 nm by applying the Scherrer equation

to the �105 peak of the wide-angle X-ray diffraction (WAXD) of

this fiber. Therefore, a3 was determined to be 0.3. The values

of N1, N3 and u33 were determined so that the calculated

patterns did not bend largely from the layer line and showed the

meridional peak width close to the measured values. The

values of sin g ju1j and u13 were determined by a trial-and-

error method so that the calculated intensity distributions at a

constant sm of the intensity maximum fitted to the measured

intensity distributions shown in Fig. 1. The structure

parameters determined in this way have been adopted for

F11 in Table 3. The values of sin g ju1j, ju3j and u13 are shown

in Table 1 and Fig. 9. The sizes of the crystalline region

perpendicular to the fiber axis were determined to be 4.3 and

5.5 nm by applying the Scherrer equation to the 100 and the

010 peak of WAXD of this fiber, respectively. The unit cell

diameter a1ju1j was calculated to be 6 nm from the values of

sin g ju1j shown in Table 1. This value is considered to be a

reasonable one in comparison with the crystallite sizes.
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The solid lines in Fig. 1 show the calculated intensity

distributions of F11 with the values of the structure parameters

shown in Tables 1 and 3 and Fig. 9. The calculated intensity

distributions well represent the measured changes of the

intensity distribution of the PET fiber caused by tensile

deformation. Therefore, the change of the scattering pattern

from the four-spot to the layer line scattering can be attributed

to the slight decrease in u13. One possible interpretation of the

decrease in u13 with tensile deformation is schematically

illustrated in Fig. 10. This figure shows that the long-period

structures are initially arranged with a large distribution of the

vectors joining transversely neighbouring crystalline regions.

By the tensile deformation of the fiber, the long-period

structures are mutually slipped along the fiber axis as shown

by the arrows in the figure until the neighbouring crystalline

regions come in contact. As a result, the distribution of the
(a) (b)

Crystalline region

Amorphous region

Fig. 10. Schematic illustrations of the bundle of long-period structures (a)

before and (b) after the long-period structures are slipped in the direction of the

arrows by the tensile deformation of the fiber.
vectors is reduced and u13 is decreased. Although the increase

in ju3j with the fiber strain up to 0.04 was not so large in

Table 1, ju3j increased substantially when much larger strain

was applied to the fiber. The details will be shown in a

succeeding paper.

The appearance of the scattering pattern changes sensitively

depending on u13. This means that the functional form of Dj

also has significant influences. More complete fitting of the

calculated and the measured scattering patterns will be

obtained if the functional form will be refined. It should be

kept in mind that the model proposed in this study is not the

only one, which accounts for the measured scattering patterns

of the PET fiber since there are different structures, which give

the same scattering pattern.
4. Conclusions

The small-angle scattering patterns were calculated based

on a structure model, which consisted of the bundles of long-

period structures. The equations for determining the structure

parameters from the scattering intensity distributions were also

derived. The proposed model produced various scattering

patterns of polymers, such as the equatorial, layer line, four-

spot, droplet-shaped and triangular scattering. The disorder in

and between the long-period structures had significant

influences on the appearance of the scattering patterns. The

0.5th order scattering arose when the disorder was large even

though the structure did not have the periodicity directly

related to the intensity maximum. A slight decrease in the

disorder due to slip between the long-period structures

accounted for the sudden change of the SAXS pattern of a

PET fiber from the four-spot to the layer-line scattering which

was caused by a slight tensile deformation.
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Appendix A

Eqs. (14) and (27) can be derived as follows. In this study,

the value of R0
j at RjZ0 is defined to be 1. It is assumed that Rj

and zj are constant around each scattering peak.

In the case of 0%Rj!1, the summation of series in Eq. (14)

can be calculated as follows.

XN
nZKN

Rjnj
j expð2pni½sjK2j�ÞZ

1KR2
j

1CR2
j K2Rjcosð2p½sjK2j�Þ

(A1)



M. Shioya et al. / Polymer 47 (2006) 3616–36283628
The function in the right side of this equation takes a

maximum value of (1CRj)/(1KRj) at sjKzjZhj and a

minimum value of (1KRj)/(1CRj) at sjKzjZhjC(1/2).

If this function is separated into a baseline with a height of

(1KRj)/(1CRj) and a peak function with a peak height of

4Rj/(1CRj
2), the area of the peak function between sjKzjZ

hjK(1/2) and hjC(1/2) is calculated to be 2Rj/(1CRj). This

peak function is approximated by an exponential function,

which has the same height and area as the original peak

function where the area of the exponential function is

calculated over infinite range of sjKzj. The approximate

function found in this way takes the following form.

XN
nZKN

Rjnj
J expð2pni½sjK2j�Þ

z
4Rj

1KR2
j

exp K4p
sjK2jKhj

1KRj

� 	2� �
C

1KRj

1CRj

(A2)

This equation also represents the case of RjZ1 as the

limiting value. The Fourier transform of Zj with respect to xj
can be calculated as:

FðZjðxjÞÞZN2
j

sin2ðpNjsjÞ

ðpNjsjÞ
2

zN2
j exp KpN2

j s
2
j

� �
(A3)

The convolution product of the functions in the right side of

Eqs. (A2) and (A3) with respect to sj can be calculated by
applying the relation

exp KAs2j
� ��

expðKB½sjK2j�
2Þ

Z
p

ACB

� �1=2
exp K

AB

ACB
½sjK2j�

2

� �
(A4)

where ACBR0. The result of calculation has been shown in

Eq. (14). Eq. (27) can be derived for 0%Rj!1. This equation

also represents the case of RjZ1 as the limiting value.
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